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Abstract 

Detecting the spread of pandemics will greatly reduce human and economic loss. Existing 

Epidemiological models used for coronavirus disease 2019 (COVID-19) prediction models are too slow 

and fail to capture epidemic development thoroughly. This research presents a Physics-based Machine 

Learning Architecture (PMLA) to improve the processing speed and accuracy of epidemic forecasting 

governed by susceptible–exposed–infected–recovered–deceased (SEIRD) model equations. The dynamics 

of the epidemic were extracted using Convolutional Neural Networks (CNN) and Deep Reinforcement 

Learning (Deep RL) from data simulated with Partial Differential Equations (PDEs). The PMLA 

accuracy is measured using mean squared error. The PMLA prediction model enhances the ability of 

health authorities to predict the spread of COVID-19 in real time efficiently and effectively. 

Keywords: COVID-19, Convolutional Neural Networks, Deep Reinforcement Learning, Partial 

Differential Equations, Machine learning, Finite Element Method. 

 

1.Introduction 

The COVID-19 epidemic is undoubtedly the most 

severe public health threat since the Spanish flu 

outbreaks of 1918 and 1919
[1]

. Following a 

dramatic increase in COVID-19 infections, many 

nations, including the United States of America 

(USA) and India, declared states of emergency. 

The World Health Organization (WHO) said the 

outbreak has affected 25,227,970 people and 

killed 278,751 people in India as of May 17, 2021, 

causing hospitals in India to overflow. COVID-19 

has created mayhem in the financial sector, 

resulting in the S&P 500's worst trading day since 

1945(Bhadra et al., 2021). On December 8, 2019, 

COVID-19, caused by the Severe Acute 

Respiratory Syndrome COVID-19, was 

discovered in Wuhan, China (“Clinical 

characteristics of refractory COVID-19 

pneumonia in Wuhan, China | Clinical Infectious 

Diseases | Oxford Academic,” n.d.). The majority 

of the first patients were exposed to the nearby 

Huanan South China seafood market, which offers 

several wild animals, implying that the zoonotic 

coronavirus breached the animal-human boundary 

at this wet market. COVID-19, namely the Severe 

Acute Respiratory Syndrome and the Middle East 
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Respiratory Syndrome (MERSV), have caused a 

couple of major epidemics in the last twenty 

years
[2]

. 

COVID-19 drastic impact on our social lives and 

the economy has piqued scientists' interest in this 

novel virus. Multiple significant concerns 

regarding the pandemic remain unanswered at this 

period
[3]

. Aside from pathology, microbiology, 

and bioinformatics, the COVID-19 epidemic has 

sparked interest in epidemiology and statistics.  

Time series analysis, machine learning models, 

and forecasting models are of particular interest 
[4-

12]
. Critical risk assessment and coordination 

countermeasures should be taken to aid an 

accurate forecast of future events. Forecasting 

COVID-19 is critical for understanding the 

estimation of virus transmission characteristics 

such as the basic reproduction number, incubation 

period, and infectious period
[13-26]

. In a real 

scenario, those parameters are not easy to 

estimate. Accurate physics-based machine 

learning models for forecasting COVID-19 

require solving complex PDEs.  

PDEs have played a critical role in providing 

detailed and reliable models for various scientific 

phenomena, especially in Physics-based machine 

learning and engineering
[27-30]

. PDEs control 

physical phenomena such as the Navier–Stokes 

equation in fluid, aerodynamics, Fourier's heat 

conduction equation, and Schrödinger's equation 

in quantum mechanics. These models were first 

discovered using skills in philosophy, statistical 

modeling, and observational evidence. Equations 

that seem to model seemingly disparate physical 

processes are identical in that they are made up of 

specific, commonly important mathematical 

components. Physical behaviors placed on the 

observable data by various parts of the model may 

aid experts in identifying the model using prior 

theory and data information 
[31]

. We can now view 

massive volumes of data from tests and 

simulations thanks to recent advances in data 

acquisition, storage, and computing tools. This 

makes it possible to derive information from raw 

data using data-driven approaches. Physics 

Informed Neural Networks (PINNs), as shown in 

Figure.1, have revolutionized many areas, such as 

machine vision, in recent decades 
[12, 32-34]

. When 

extended to scientific evidence, they can help 

solve and explain physical problems.  

 

 
Figure. 1. Overview of PINN 

 

PINNs include the Physics-based machine 

learning of the underlying problem in the loss 

function. The governing partial differential 

equation is used to directly calculate the loss 

function of PINNs, which is minimized during 

training. The residuals at collocation points, the 

weighted residuals obtained by the Galerkin-

Method, or the energy functional of an Euler-

Lagrange differential equation all contribute to the 

loss function 
[35, 36]

. Thus, for training a PINNs, 
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there is no need to generate labeled training data 

in advance. In the problem domain the input data 

for PINNs points are sampled. Distance between 

the approximated solution of the partial 

differential equation and measured values of the 

solution is augmented by the loss function. Then 

one or more coefficients of the partial differential 

equation can be included as unknowns during 

training. By using this way, an inverse problem is 

solved. Solving inverse problems with PINNs 

may lead to a significant speedup compared to 

conventional methods
[32]

. PINNs solve eigenvalue 

problems when the loss function of a neural 

network is related to the Rayleigh-Ritz coefficient 
[37,38]

. Physics-based machine learning models that 

could offer faster and more accurate solutions are 

essential to replace existing numerical 

epidemiological models. 

To conduct this research, we took the following 

approach: We start with a SIERD model and use 

analytics to derive a differential equation of 

infection rate, which provides information on 

individual infection percentages in the 

region.  The infection rate is then calculated using 

the heatmap snapshots for the region-infected 

community. This process uses Machine Learning 

techniques, specifically Deep Residual Recurrent 

Neural Networks (DR-RNN)
[39]

. The latter was 

pre-trained on simulated SIERD data before being 

trained on each region's recorded infected data. 

We validate the resulting SIERD model against 

the region's data until we know the infection rate. 

The following is a breakdown of the paper's 

structure. Section 2 talks about the methodology 

of the study introduce the procedure to produce 

data for PINN. The performance of PINN is 

evaluated and discussed in Section 3. Section 4 

summarizes the limitation of the study, and 

section 5 concludes.  

 

2. Methods 

The PINN is trained on large quantities of data 

simulated by the SEIRD model PDEs with a 

heterogeneous diffusion model. The model 

describes the spatiotemporal spread of the 

COVID-19 pandemic, and aims to capture 

dynamics also based on human habits and 

geographical features
[40]

. Finally, the 

computational efficiency of the PINN is 

investigated. Our proposed model PINN uses the 

snapshots of COVID-19 of Delhi, India, from 

January 1 to April 30, 2021, to forecast the 

potential growth of COVID-19 for the next two 

weeks. Data was obtained from the ArcGIS. 

ArcGIS Online is a cloud-based mapping and 

analysis solution. Use it to make maps, analyze 

data, and share and collaborate. With a free public 

account, data can be created, stored, managed and 

shared with others. 

 

 
Figure 2. Overview of PINN 

 

In this Figure.2, we describe the overview of 

PINN through a flowchart. We note that after the 

extraction of the infection rate from the data we 

use the SEIRD model to further investigate the 

parameter. Gmsh is used to build the mesh, which 

is uniformly optimized as the simulation 
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progresses. Gmsh is an open-source 3D finite 

element mesh generator with a built-in CAD 

engine and post-processor. Its design goal is to 

provide a fast, light, and user-friendly meshing 

tool with parametric input and flexible 

visualization capabilities. Gmsh's mesh module 

regroups several 1D, 2D, and 3D meshing 

algorithms: The 2D unstructured algorithms 

generate triangles and/or quadrangles (when 

recombination commands or options are used). 

The 3D unstructured algorithms generate 

tetrahedra, or tetrahedra and pyramids (when the 

boundary mesh contains quadrangles). 
[41,42]

. After 

being developed in one level, the mesh has a 

minimum spatial resolution of around 1 kilometer.  

2.1. Convolutional Neural Network 

Yann André LeCun proposed CNN in 1998
[43]

. 

CNN has eight layers with weights, as shown in 

Figure.3, with the first five being convolutional 

and the last three being connected. The previous 

completely connected layer's output is fed into a 

1000-way softmax, which generates a distribution 

over the 1000 class labels. Since the data 

representation to our neural network is an image 

(2D).  

 

 
Figure. 3. CNN overview 

 

2.2.Long Short-Term Memory 

The Recurrent Neural Network (RNN) 

architecture can be written as:  
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(2) 
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Where    is the input at time t;    is the hidden 

state at time t;    is the output at time t; b and c 

are the bias vectors of the RNN; W and V are the 

weight matrices of the RNN is shown in Eq. (1) 

and Eq. (2). The current time step's input and the 

previous time step's hidden state are used in 

calculating the current hidden state., which acts as 

the RNN's memory, according to Eq. (1). For 

predicting the responses of dynamical systems, the 

loss function is shown in Eq. (3). Where   ̂ and    

are the predicted and actual system states at given 

time t. The number of time measures, functions, 

and training samples is denoted by T, N, and S, 

respectively. Back-propagation through time is 

used to change the values of RNN parameters 

during the preparation
[44]

. However, it was 

reported that the standard RNN architecture has 

difficulties in learning long-term dependencies 

due to the vanishing or exploding gradient 

problem
[45]

. Gated RNN designs such as the Long 

Short Term Memory (LSTM) and the gated 

recurrent unit were developed to overcome this 

issue
[46,47]

. RNNs that can learn long-term 

dependencies are known as LSTM networks. 

LSTM anticipated by Hochreiter and 

Schmidhuber
[48]

, has been used as an advance 

version of the RNN network and has overcome 

the limitation of RNN by use of a hidden layer 

unit known as memory cells. Memory cells have 

self-connections that store the network's temporal 

state and are controlled through three gates 

named: input gate, output gate, and forget gate 
[49]

. 

The work of the input gate and output gate is used 
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to control the flow of memory cell input and 

outputs into the rest of the network. In addition, 

the forget gate has been added to the memory cell, 

which passes the output information with high 

weights from before the next neuron. The 

information that resides in memory depends upon 

the high activation results; if the input unit has 

high activation, the information is stored in the 

memory cell. In addition, if the output unit has 

high activation, then it will pass the information to 

the next neuron. Otherwise, input information 

with high weights resides in the memory cell 
[50]

. 

The LSTM architecture can be expressed in the 

following Eq.(4-8).  

                       

 

(4) 

                       

 

(5) 

                       

 

(6) 

                                   

 

(7) 

              

 

(8) 

where    is the forget gate vector; it is the input 

gate vector;    is the output gate vector;      is 

the hidden state vector;      is the cell state 

vector,   ,    ,   and    are the weight 

matrices;,    ,  ,    and    are the bias vectors; 

the operator   denotes element-wise 

multiplication;    represents the sigmoid function; 

and    represents the hyperbolic tangent function.  

2.3. Deep residual RNN (DR-RNN)  

The Physics-based machine learning of dynamical 

systems is expressed in their governing equations, 

which can be written in a general form as: 

   
  

⁄         (9) 

 

Where y is the dynamical system's state variable, 

Eq. (9) can be solved analytically or numerically 

to obtain the dynamical system's answer. For 

example, using the implicit Euler form, the device 

state at time instant t + 1 can be obtained as: 

                       (10) 

 

where h is the time step size. From Eq. (10), a 

residual function can be formulated as:  

                            

 

(11) 

 

By stacking I network layers as shown in Eq.(12), 

the DR-RNN architecture is meant to iteratively 

reduce the residual function provided in Eq. (11). 

     
      

                
  , for i=1 

 

(12) 

     
      

    
  

√    
    

 , for i>1 

 

(13) 

where i is the layer number;     
  is the residual at 

time instant t + 1 in the ith layer as show in Eq.(7-

8); W, U, and η are the weight parameters of the 

DR-RNN [39];To avoid division by zero    is a 

used which is a small number; and    is 

determined as the residual's exponentially 

decreasing squared norm 

             
        

 

(14) 

where   and   are the fraction factors and their 

values are set as 0.9 and 0.1, respectively. The 

training objective of the DR-RNN is to find a set 

of parameters that minimizes the residual function 

defined in Eq. (11) the DR-RNN can be thought 

as a numerical integrator, which is, to a great 

extent, like performing implicit integration, i.e.  

making the residual zero by solving Eq. (10),. DR-

RNN is learning to perform implicit integration. 

The DR-RNN is explicit in time with a constant 

computational cost at each time step, unlike 

implicit integration methods.. To minimize the 

loss function given in DR-RNN the Adam 

optimizer
[51]

 is used, which was created using the 

TensorFlow machine learning system in Eq.(3). 

2.4. Modeling and integration of COVID-19 

In this section, the COVID-19 is first briefly 

reviewed, and then the integration of the equations 

of SIERD into the DR-RNN is introduced. The 

development of short-term prediction models for 

forecasting the number of possible cases, aided by 

computational simulation of the virus's dynamics. 
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To avoid deaths and cure patients, strategic 

planning should be implemented in the public 

health industry. Using computational model’s 

virus transmission can be forecasted. Here, we 

work with a spatio-temporal SEIRD model, 

presented in 
[40]

, and given in Eq.(15-19). 
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(19) 

 

where the densities of the susceptible, exposed, 

infectious, recovered, and deceased populations 

are denoted by s(x; t), e(x; t), i(x; t), r(x; t), and 

d(x; t) respectively. The total living population is 

expressed by    Which is the number of all 

compartments except d(x; t). we considered the 

tendency of outbreaks to cluster around large 

populations,    and    denote the transmission 

rates between symptomatic and susceptible 

individuals and asymptomatic and susceptible 

individuals, respectively (units       ),   denotes 

the incubation period (units       ),    

corresponds to the asymptomatic recovery rate 

(units       ),    the symptomatic recovery rate 

(units       ), represents the mortality rate (units 

      ), and   ,   ,   ,    are the diffusion 

parameters of the different population groups as 

denoted by the sub-scripted letters (units     

                ). Note that all these 

parameters can be considered time and space 

dependent.  

 

 

 

2.5. Learning virus dynamics  

The snapshots can now be assembled into a 

snapshot matrix for the training PINN as shown in 

Figure 4. Once we have a PINN trained on the 

infected data of the region, we may use it to 

extract the presence and persistence of the social 

distancing measures typified through the function. 

The reference target mesh is the uniformly refined 

fixed mesh considered in the early stages of the 

simulation, presenting 56558 nodes and 78340 

elements. The simulation considers a time step 

size of  t = 0:25 days for the numerical 

integration and    =  t = 0:25 days for the 

observations. We then run fixed mesh simulations. 

The simulation of the SIERD model, obtained 

using the Runge-Kutta method. The accuracy of 

the learned parameters by DR-RNN is validated 

using the mean square error with respect to the 

exact solution. We start by presenting the results 

for the daily learned parameters followed by the 

associated reproduction numbers. Then, 

predictions of infectious cases are provided. The 

details of the training are explained below.  
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Figure.4. Initial conditions (January 1, 2021) in Delhi, India 

 

The model is trained using a custom training loop 

by minimizing the mean squared error loss for 

data (      as shown in Eq. (20). 

 

     
 

 
∑ 

 

   

    ̂  
  

 

 

(20) 

where {    ̂ }   
 denote the set of the reported,    

real reported cases and  ̂  represents predicted 

cases and the mean squared error loss (      

represents the residuals that are obtained from the 

SIERD model Eq. (15-19) by subtracting the right 

side from the left side.  

                    

 

                                         

(21) 

The loss function of PINN is made of two terms: 

     and      as shown in Eq.(21).Which are 

defined by the last part of the above equation. The 

parameters {  ,   } denote the weight 

coefficients in the loss function that can balance 

the optimization effort between learning the data 

and satisfying the SEIRD model PDEs. We load 

the pre-trained model and allow all its weights to 

be tuned by minimizing again both the      and 

     on the region data. The pre-trained model is 

used to accelerate each region's training process.  

 

3. Results and Discussions 

In this section, we conduct extensive evaluations 

of the proposed method. COVID-19 heatmap 

snapshots for the first 120 days (120 snapshots) 

are collected. The snapshot matrix assembles the 

information regarding 106 days for training, while 

PINN approximates the results for 120 days. The 

idea is to forecast two weeks in the future, given 

the data observed in the past 106 days. We present 

MSE between the real data and the PINN 

prediction for the 120
th

 day in Figure.5. Table 1 

and Figure shows the overall mean square error 

for the compartments (susceptible, exposed, 

infectious, recovered, and deceased) 

approximations and computation time.  
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Figure 5: Comparison between a snapshot of real data and PINN prediction at t = 120 days. The PINN 

correctly captures the virus dynamics and accurately reproduces the solution with a mean square error  

        in space and time. 

 

Table.1. The mean square error for the six compartment approximations and computation time 

Compartments mean square error Solution Time(seconds) 

Susceptible 1.54        76.4 

Exposed 2.74        61.9 

Infectious 1.30        77.3 

Recovered 2.54        81.9 

Deceased 1.94        88.5 

 

 
Figure.6. PINN model prediction and real data from April 16

th
 to April 30, 2021  

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7321055_gr6_lrg.jpg
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7321055_gr6_lrg.jpg
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From Figure 6, we can note that most 

compartments show results in agreement with the 

real data, while the exposed compartment reveals 

more pronounced differences than the other 

compartments. We notice that the curves are 

different for each compartment. This discrepancy 

occurs due to the different parameters for each 

equation in the SEIRD model, which largely 

affects the system's dynamics. The dynamics for 

each compartment are different since each 

compartment presents different coupling, 

diffusion, and reaction parameters. 

The curves for each compartment are different, 

which is the first thing we find. This discrepancy 

occurs due to the different parameters for each 

equation in the SEIRD model, which 

predominantly affects the system's dynamics. The 

dynamics for each compartment are different 

since each compartment presents different 

coupling, diffusion, and reaction parameters. Also, 

regarding this issue, since the parameters are time 

and space-dependent, sudden changes in their 

values can affect the dynamics of the system as 

well as PINN dynamics mapping ability. Some 

sudden changes in the susceptible and exposed 

compartments related to stricter public policies 

considered to reduce the transmission rates 

(parameters infectious and exposed) are 

incorporated into the model. Since the variation in 

the parameters is not introduced smoothly, 

PINN’s ability to map sudden changes in the 

dynamics of the system is reflected by some 

spikes on the curves of the mean square errors in 

time. Comparing the real data and prediction data, 

we observe that the errors tend to grow as soon as 

the forecasting starts for the 118
th

 day. The 

exposed compartment, which yielded most of the 

oscillations due to parameter changing on the real 

data, presented the same behavior on the 

prediction phase around the 118
th

 day. We also 

note that the exposed compartment yields a 

significant mean square error for the 120th day 

than the other compartments. In Figure 6 we 

compared these results with the presented results, 

we can conclude that the predictions are 

reasonably accurate compared to the real data, 

especially considering the time required for 

calculation. In this study, the total population 

during the simulation is normalized by the total 

population modeled in the initial conditions. The 

total population is computed as the sum of the 

integral of the compartments divided by the sum 

of the integral elements of the mesh.  

 

4. Limitations and Future work 

The limitation of the study is that the PINN model 

does not consider population growth, the value 

must be theoretically constant for all the 

simulations. Secondly, variation in the parameters 

is not introduced smoothly so the PINN's ability to 

map sudden changes in the dynamics of the 

system is reflected by some spikes on the curves 

of the mean square errors in time. For further 

study, this developed model should be applied to 

various data to see the accuracy of the model, and 

variation in the parameters should be introduced 

smoothly so the PINN's ability to map sudden 

changes in the dynamics of the system is not 

reflected in the mean square errors in time. 

 

5. Conclusion 

Accurately forecasting COVID-19 is a major 

concern for many public health agencies to end an 

outbreak by effectively and timely planned 

hospital treatment. PINN a data-driven deep 

learning approach based on physics physics-

informed neural network is introduced to solve the 

SIERD models on daily time-varying parameters. 

The introduced PINN is trained on large quantities 

of data simulated by the SEIRD model PDEs. The 

proposed model PINN used the snapshots of 

COVID-19 data obtained from ArcGIS of Delhi, 

India, from January 1 to April 30, 2021, to 

forecast the potential growth of COVID-19 for the 

next two weeks. The simulation of the SIERD 

model was obtained using the Runge-Kutta 

method. The accuracy of the learned parameters 

by DR-RNN is validated using the mean square 
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error concerning the exact solution. In the results, 

compartments showed agreement with the real 

data, while the exposed compartment revealed 

more pronounced differences than the other 

compartments. The study's results will aid 

policymakers and healthcare providers in 

effectively preparing and providing resources to 

deal with the crisis in the coming days and weeks, 

including nurses, beds, and intensive care units. It 

is shown that the predictions made by a PINN 

align well with the real data. The PINN can still 

predict the responses with sufficient accuracy, and 

limited training data does not have a significant 

effect on the prediction performance of the 

physics-based learning method. PINN models 

offer faster and more accurate solutions by 

replacing existing numerical epidemiological 

models.  
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